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Abstract Methods for the computation of rate constants that
characterize classical reactions occurring in the condensed
phase are discussed. While microscopic expressions for these
transport properties are well known, their computation
presents challenges for simulation since reactive events of-
ten occur rarely, and the long time scales that are typical for
reactive processes are not accessible using simple molecular
dynamics methods. Furthermore, the underlying free energy
surface is very complex with many saddle points that pre-
vent sampling of possible reaction pathways. As a result, the
reaction coordinate may be a complex many-body function
of the system’s degrees of freedom. Since there is not an
a priori way to define a “good” reaction coordinate, methods
are being developed to assist in a systematic construction
of a reaction coordinate. These methods are reviewed and
examples of non-trivial reaction coordinates are presented.

1 Introduction

Theoretical and experimental research in the study of reac-
tions in the condensed phase has made remarkable progress
in the understanding of the role of solvent on the mecha-
nisms of a wide array of chemical reactions. Improvements
in instrumentation and analysis has given possibilities of
exploring reaction mechanisms in new environments such
as surfaces [1] and clusters [2–4]. Advances in femtosecond
optical techniques [5–7] stimulated studies on the role of the
solvent in reaction pathways in solution [8] while various mi-
croscopies are used to investigate molecular details of reac-
tions on surfaces [1]. Such techniques provide a great deal
of insight into details of reaction pathways on microscopic
scales and, together with advances in molecular simulation
techniques [9], into limitations of phenomenological macro-
scopic descriptions of reaction rates [10]. Better understand-
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ing of the underlying phenomena lead to the development
of many powerful theoretical models. Evolution of computa-
tional techniques developed for the past several decades has
led to many advanced simulation methods for the study of
reactions in condensed phase ranging from continuum mod-
elling of the solvent [11,12] to molecular modelling where
an extensive use of molecular dynamics (MD) techniques is
made [13–15].

In this article, we provide an outline of the path of research
on barrier crossing dynamics in condensed phase. Emphasis
is given on the reactive flux method for the computation of
rate constants as it is derived rigorously from fundamental
principles using projection operator techniques. In Sect. 2
the use of the scheme in computer simulations is discussed.
Due to the crucial role that a reaction coordinate (RC) plays
in the computation of the reaction rate constants in Sect. 3
we review methods that are being developed to define RCs in
a systematic way. Examples of non-trivial RCs are presented
in Sect. 4 and the article closes with a summary of unresolved
questions on methods and directions in the field.

Probably the most well-known phenomenological theo-
retical treatments of condensed phase reactions with a con-
tinuum treatment of the solvent are Smoluchowski’s [16]
diffusion equation approach for diffusion-limited reactions
and Kramers’ [17] Fokker–Planck equation treatment of bar-
rier crossing dynamics. Both of these approaches account
for solvent effects by introducing phenomenological diffu-
sion and friction terms. Kramers [17] models a reaction by
the Brownian motion of a particle that escapes from a poten-
tial well over a barrier. The minimum of the potential well
is harmonic potential and the barrier an inverted parabola.
The Langevin equation describing dynamics of a particle in
viscous solution reads,

M
du(t)

dt
= −ζu(t) − ∂W (ξ)

∂ξ
+ f (t), (1)

where u is the velocity of the Brownian particle in a fluid, M
its mass, ξ is the RC, W (ξ) the potential of mean force (PMF),
ζ is the friction coefficient and f (t) is a random force. The
random force is taken to be a Gaussian random variable with
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white noise spectrum and is related to the friction constant by
the fluctuation–dissipation relation, 〈 f (t) f (t ′)〉 = 2kB T ζ
δ(t − t ′), where T is the temperature, kB Boltzmann’s con-
stant and δ(t) is the Dirac delta function. The solution of
Kramers’ model distinguishes three regimes, of high, mod-
erate and low friction. The rate coefficients that correspond
to the three regimes for irreversible passage across the barrier
are given respectively by

k f = ω0ω
′M

2πζ
exp (−�W ), (2)

k f = ω0

2π
exp (−�W ), (3)

k f = ζβ�W

M
exp (−�W ) (4)

where �W is the difference in the PMF between the bar-
rier top and the minimum, ω0 and ω′ are the frequencies
of the harmonic potentials at the minimum and the barrier
top of the PMF, respectively. The theory was generalized by
Grote–Hynes for friction with memory in the high to moder-
ate friction regime [18–21] and extensive studies have been
made to compare Kramers’ and Grote–Hynes models (see
for example [22,23]). The Hamiltonian origin of Grote–Hy-
nes model was investigated [24–29] by describing the effect
of the solvent by a system of harmonic oscillators bi-linearly
coupled with the RC. Many studies have also been devoted to
find a unified expression for the rate coefficients that holds in
all friction regimes (see for example [18,30,31]). A historical
review on Kramers’ theory and developments of methods on
reaction rates are found in Refs. [11,15,32].

In parallel to the development of methods that describe
the solvent effect macroscopically, microscopic expressions
of chemical rate constants in terms of autocorrelation func-
tions were developed. Such expressions were first derived by
Yamamoto [33] in 1960 using linear response theory. These
expressions have been re-derived in various ways and form
the basis for numerical calculations of rate constants for con-
densed phase systems [34–39]. A general method for the
derivation of rate laws and rate constants can be formulated
using projection operator techniques [34,40]. Zwanzig [41,
42] and Mori [43,44] introduced projection operator tech-
niques to provide microscopic derivation of equations that
have the form of Eq. (1), generalized to any dynamical var-
iable, and relaxed the condition that the random force cor-
relations decay instantaneously as reflected by the δ-func-
tion correlations. The derivation of the generalized Langevin
equation for a dynamical variable denoted by G is presented
in Appendix A. The final expression is:

dG(t)

dt
= i	G(t) −

t∫

0

dτ K (τ )G(t − τ) + F(t), (5)

where i	 = (i LG(0), G)(G, G)−1 is termed the frequency
matrix; F(t) = ei L Qt i L QG is the random force; K (τ ) =
−(F(τ ), F(0))(G, G)−1 is the memory kernel. L Q = QL

where L is the Liouville operator and Q is the projection
operator that projects onto the space of dynamical variables
orthogonal to G. (., .) denotes an inner product defined as
(U, V ) = ∫

U V ∗ρ0d� where ρ0 is the equilibrium distribu-
tion function and d� is the phase space volume element. To
illustrate the derivation of the macroscopic rate law, consider
the simple situation where two chemical species interconvert,

A
k f
�
kr

B, (6)

and recall the phenomenological description of the rate of
this reaction. Let the average number of A (B) molecules
in the system at time t be N̄A(t) (N̄B(t)) and their values at
chemical equilibrium be N̄ eq

A (N̄ eq
B ). The mass action rate law

for this system is

dN A(t)

dt
= −k f N A(t) + kr N B(t),

dδN A(t)

dt
= −(1 + K −1

eq )k f δN A(t).

(7)

In the second line of this equation, we used the fact that
δ N̄B = −δ N̄A and definition of the equilibrium constant and

the detailed balance condition, Keq = k f

kr
= N

eq
B

N
eq
A

.

To derive this chemical rate law from the microscopic
equations of motion, it is only necessary to choose micro-
scopic variables in Eq. (5) that correspond to chemical spe-
cies. The choice of microscopic chemical species variables
can be a difficult task and some examples will be given be-
low. Suppose we know the microscopic expressions for the
dynamical variables NA (NB) which correspond to the num-
ber of molecules of A (B). These variables depend in gen-
eral on the positions and momenta of the particles in the
system and their average values correspond to the N̄A(t)
(N̄B(t)) that enter the phenomenological rate law. The devia-
tions of these dynamical variables from their average values
at equilibrium, N

eq
A (N

eq
B ), are denoted δNA = NA − N

eq
A

(δNB = NB − N
eq
B ). Substituting δNA and δNB in Eq. (5)

we obtain the generalized Langevin equation for the reactive
system,

dδNA(t)

dt
= −(1 + K −1

eq )

t∫

0

dτ K (τ )δNA(t − τ) + F(t),

(8)

where K = (F(τ ), i LδNA)(δNA, δNA)−1 = (F(τ ), δ ṄA)
(δNA, δNA)−1. The frequency term in Eq. (5) is zero as a
result of time reversal symmetry and the random force is
given by F(τ ) = ei L Qτ i LδNA.

In order to obtain the macroscopic chemical rate law from
the generalized Langevin equation, we must first construct
the equation for the average values of the chemical spe-
cies numbers. In analogy with macroscopic chemical studies,
we suppose that an initial non-equilibrium ensemble is con-
structed where only the chemical concentrations are specified
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and all other degrees of freedom are assumed to be in equi-
librium. The average of the dynamical variable at time t over
this ensemble will be denoted by the same symbol as the
average concentration in the phenomenological law, N A(t).
The average of the random force in this ensemble is zero,
since it is orthogonal to the chemical species variables. Fi-
nally, if one assumes that the memory kernel decays much
more rapidly than the species concentrations, an assumption
whose validity rests on the fact that species concentrations
are the only slow variables in the system, the chemical spe-
cies number may be removed from under the integral and the
integral extended to infinity. The result of these operations is
the macroscopic chemical rate law,

dδ N̄A(t)

dt
= −(1 + K −1

eq )
[ ∞∫

0

dτ K (τ )
]
δ N̄A(t). (9)

By comparison with the phenomenological rate law in Eq. (7),
one obtains the rate constant as the time integral of the ran-
dom flux autocorrelation function,

k f =
∫ ∞

0
dτ K (τ ). (10)

The rigorous definition of the rate kernel involves the
propagator ei QLt that involves projected dynamics; however,
one usually computes unprojected (natural) evolution where
the rate kernel is given by the same expression as for pro-
jected dynamics, but the propagator ei QLt is replaced by ei Lt .
We denote the rate kernel using unprojected dynamics by K̃ .
Some care must be used in the evaluation of the rate kernel
when this approximation is used since the infinite time inte-
gral of K̃ (τ ) is zero. (For a derivation of this result see Ref.
[45]). The computation of the rate constant rests on the exis-
tence of a plateau value. If the time scale for the decay of the
memory kernel is tmic and that of the chemical concentrations
is tchem and these two time scales are widely separated, then
one can define time t∗ such that tmic � t∗ � tchem. In such
a circumstance, one may approximate the rate coefficient by

k f ≈ k f (t
∗) =

t∗∫

0

dτ K̃ (τ )

=
t∗∫

0

dτ (δ ṄA(τ ), δ ṄA)(δNA, δNA)−1. (11)

2 Reaction coordinate and rate constants

In order to illustrate the use of this formula in a simple con-
text, suppose a one-dimensional RC ξ(q1, q2, . . . ) is known
and can be used to characterize the passage from A to B
species. This variable may be a complicated function of the
positions of the molecules in the system. The dynamical var-
iable corresponding to species A is NA(t) = θ(ξ(t)− ξ‡) so

that when ξ(t) < ξ‡, we have species A and species B for
ξ ≥ ξ‡. Here θ(x) is the Heaviside function. In this case the
time-dependent rate constant [Eq. (11) with t∗ → t] takes
the form,

k f (t) =
(

1

N̄ eq
A

+ 1

N̄ eq
B

)
〈ξ̇ δ(ξ − ξ†)θ(ξ(t) − ξ†)〉, (12)

where we have performed the time integral to obtain this
expression.

In computer simulations, the rate constant is usually com-
puted in two steps [35,34]. First, the t = 0 value of the rate
constant is calculated in the following way: suppose we con-
sider a time t = 0 + ε ≡ 0+ where ε is a small positive
number. Equation (12) may be written as

k
TST

f = k f (0+) =
(

1

N̄ eq
A

+ 1

N̄ eq
B

)
〈ξ̇ δ(ξ − ξ†)θ(ξ̇ )〉, (13)

which is just the transition state theory expression, k
TST

f , for
the rate constant [34,37]. The full time-dependent rate con-
stant may then be expressed as,

k f (t) = k
TST

f κ(t), (14)

Here κ(t) (0 < κ(t) ≤ 1) is the transmission coefficient.
The transition state of the reaction is found by computing the
reversible work (free energy) W (ξ) associated with the RC
by

W (ξ) = −kB T ln
P(ξ)

Pu
, (15)

where

P(ξ) = 〈δ(ξ − ξ†)〉 (16)

is the probability density of finding the system with a par-
ticular value of the RC equal to ξ and Pu is a normalization
factor. Distinction should be drawn, however, between the
phenomenological definition of the free energy of activation
and the reversible work W (ξ) [46]. Definition of the latter
(15) implies that its value depends not only on the value of
ξ but also on the functional form of the variable according
to the change of variable rules in probability theory. This
correction is often called the entropic factor [23].

The computation of the free energy may be difficult since
the transitions between reactants and products are rare events
that cannot be studied by direct MD simulations because
of insufficient sampling of transitions. The free energy sur-
face can be constructed using non-trivial sampling techniques
such as Monte Carlo methods in the context of umbrella sam-
pling [47], MD using the “blue moon” ensemble [48–52] and
metadynamics technique [53,54]. From a knowledge of the
free energy at the barrier top and the equilibrium statisti-
cal averages in Eq. (14) one may calculate k

TST

f . One of the
assumptions of TST is that the trajectories that arrive at the
barrier top with velocities directed towards the product state
will end in the product state: re-crossings of the free energy
barrier are neglected. For reactions in the condensed phase,
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this assumption often breaks down and the re-crossing cor-
rections may change the value of the TST estimate. If the
changes are too large, this signals a poor choice of RC unless
it is diffusive barrier crossing. An example of such a break-
down is a nucleation process where changes in nucleus size
are independent processes. The re-crossing correction in this
case is given by the Zeldovich factor [55,56] and is a very
small quantity. Sometimes the re-crossing can be reduced by
a clever choice of RC [57], however, in many cases, such a
choice is difficult.

Re-crossing corrections are taken into account by the
transmission coefficient, κ(t), which is computed by mon-
itoring θ(ξ(t) − ξ‡) for a large number of trajectories that
evolve starting from the barrier top. The transmission coeffi-
cient will decay with time and if the time scale separation
discussed above exists, the rate coefficient can be determined
from the plateau value of κ = κ(t∗) and the value of k

TST

f .
One of the difficulties in the study of the reaction rates is

the search for a suitable RC. A ‘good’ RC may involve the
solvent degrees of freedom in addition to the degrees of free-
dom of the reacting species. Often, it is a challenging problem
in finding such an RC and methods have been developed [58]
that may assist in finding out what effects are important in
the reaction mechanism and therefore, help in constructing
an RC.

3 Systematic ways of finding RCs

3.1 Transition path sampling

Transition path sampling (TPS) developed by Bolhuis, Chan-
dler, Dellago, Geissler [59–61] is an alternative technique to
find possible reaction paths. The approach is based on a sim-
ple and elegant technique to sample all possible states of
a system subject to the constraints that the initial and final
coordinates of the generated paths lie in the reactant and prod-
uct states, respectively. The method is based on the scheme
proposed by Pratt [62] where reactive paths constructed by a
Markov chain of states are selected by Monte Carlo sampling
in the space of trajectories. TPS has two parts: the sampling
of reactive trajectories and the computation of the reaction
rate using a type of thermodynamic integration.

For the sampling of the dynamic trajectories an initial
reactive path is generated using constant energy determin-
istic or stochastic dynamics. Then, a state that corresponds
to a randomly chosen time slice in the trajectory is mod-
ified by “shooting” moves or new states are generated by
“shifting” moves. The new state(s) is accepted by an MC
scheme that satisfies detailed balance provided that the new
trajectory starts in the reactant and finishes in the product
states. Otherwise, the trajectory is immediately rejected. By
this scheme, the reactive trajectories are sampled and their
analysis can provide knowledge of the reaction mechanism
and give insight into ways of defining RC. The trajectories
are integrated for short time since the reactive events are
infrequent but once they occur, they are fast. However, the

sampling may be difficult when the motion of the trajectory
at the transition state is diffusive and when the reaction may
happen through different channels.

The computation of the reaction rate is slightly more com-
plicated. One may express the rate in a direct way as the num-
ber of successful trajectories n AB from A to B within time t
over the total number of trajectories, n A, that start from A

kAB(t) = n AB(t)

n A
= 〈IA(ξ(0))IB(ξ(t))〉

〈IA(ξ(0))〉 . (17)

IA(B)(ξ) is an indicator function defined as:

IA(ξ) =
{

1 if ξ ∈ A
0 else . (18)

In the TPS method [60], the rate (17) can be computed
using thermodynamic integration as follows: an order param-
eter (λ) is introduced such that the coordinate space is foliated
into subsets

B(s) = {q|λ(ξ) > s}. (19)

One considers an ordered sequence of values of the order
parameter {s0, s1, . . . , sn} and the corresponding subsets:

R3N = B(s0) ⊃ B(s1) ⊃ · · · ⊃ B(sn) = B. (20)

One may verify by direct substitution that rate expressed by
Eq. (17) can be factorized as:

kAB(t) =
n∏

i=1

〈IA(ξ(0))IBi (ξ(t))〉
〈IA(ξ(0))IBi−1(ξ(t))〉 . (21)

Each factor in the above product is the conditional probability
for a trajectory to finish in subset Bk provided the trajectory
reaches subset Bk−1. By refining the sequence Bk , one may
expect to achieve a high degree of accuracy in the computa-
tion of the rate.

Fig. 1 Illustration of problems arising in refining the phase space in
the course of thermodynamic integration. Dashed blue lines show the
most probable paths corresponding to sets Bk and Bk+1. Dashed area
signifies high values of the free-energy barrier. One observes singular
changes in the most probable path connecting A and Bk,k+1 when the
difference between Bk and Bk+1 is small
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In Fig. 1 we illustrate the importance of adequate descrip-
tion of the free energy surface by the order parameter. When
this is not the case, ensemble of paths connecting A and Bi
may undergo drastic changes for small changes in the value of
the order parameter. This may directly affect the efficiency of
the MC scheme. The fraction of paths contributing to the fac-
tor kBk Bk+1 is very small even for a small difference between
sets posing a challenge for accurate sampling. The above
example emphasizes the role of study of chemical mecha-
nisms for accurate computations of the rates.

3.2 Minimal action path

A scheme proposed by Elber, Olender, Cárdenas, Ghosh and
Shalloway [63–65] finds the most probable reaction path with
fixed ends in the reactant and product states by minimization
of an action:

S = inf

t2∫

t1

dτ

∥∥∥∥ζ
dξ

dt
+ ∇W (ξ)

∥∥∥∥
2

. (22)

Motivation for considering the above form of an action func-
tional comes from Langevin equation in the large friction
limit

ζ
dξ

dt
+ ∇W (ξ) = f(t). (23)

The most probable path (22) may reproduce the reac-
tion mechanism when a reaction is determined by energetic
factors and the majority of trajectories are found close to the
minimum energy path. In high temperature where entropy ef-
fects are important, several trajectories that pass from differ-
ent locations on the underlying free energy surface may be
important for the reaction mechanism. A single trajectory
that is found by this technique may not be representative
of the reaction mechanism. Furthermore, multichannel reac-
tions with not well-defined products may not be handled by
the method. Computationally, determining the minimum of
action in Eq. (22) is possible only for smooth energy surfaces.
In rough energy landscapes, there would be many potential
solutions that are local minima of the functional (22) making
it impossible to determine the true solution.

Alternatively, instead of minimizing the action on a fixed
interval, we may look for the steepest descent reaction paths
ξ(λ) such that
dξ(λ)

dλ
= ∇W (ξ)

‖∇W (ξ‖ . (24)

In the above equation, we changed the parametrization of
curve ξ from time t to a natural parameter λ. Differentiating
the identity∥∥∥∥dξ(λ)

dλ

∥∥∥∥
2

= 1 (25)

and using Eq. (24), we deduce that for the steepest descent
path the component of ∇W (ξ) perpendicular to curve ξ is
zero:

∇W (ξ) · dξ(λ)

dλ
= 0. (26)

This condition

∇W (ξ)⊥ = 0 (27)

is taken as the basis of minimal energy path approach [66].
For a smooth energy landscape, a solution of Eq. (27) con-
necting two local minima consists of a connected path be-
tween extrema of the energy profile ∇W (ξ) = 0.

Ulitsky and Elber [66] proposed a parametrized path evo-
lution technique to find piecewise steepest descent path by
integrating the following equation:

dξ(α, s)

ds
= −∇W (ξ)⊥(α, s). (28)

In the evolution of Eq. (28) neither natural parametri-
zation nor natural length of ξ is preserved. By including
additional constraints, one arrives at the various numerical
techniques of finding the steepest descent path (e.g. Nudged
Elastic Band method [67,68]).

For a complex energy surface, steepest descent method
produces many possible paths connecting the product and
reactant states. The direct enumeration of the paths is impos-
sible except in the simplest of cases. Direct integration of
Eq. (28) will produce only one solution for a given initial
condition. To overcome this problem, the finite temperature
string method [58,69,70] was proposed where Eq. (28) is
replaced with a stochastic differential equation

dξ(α, s)

ds
= −∇W (ξ)⊥(α, s) + f⊥(α), (29)

where f⊥(α) is gaussian noise with zero component in the
direction dξ(α, s)/dα. This approach, while having no phys-
ical foundation, provides an efficient way for sampling mul-
tiple steepest descent pathways.

4 Applications to classical systems

4.1 Fragmentation of clusters charged with ions

Even though TPS and methods based on finding the most
probable reaction path by minimization of the action are suc-
cessful in unravelling reaction mechanisms, there are reac-
tions where these approaches cannot be applied. Physical
fragmentation of charged clusters is a multi-channel pro-
cess without an a priori knowledge of the products. The
study of fragmentation of charged liquid clusters is impor-
tant for understanding fundamental questions of the physical
and chemical processes in electrospray techniques [71,72]
used in experiments. In our simulations, the clusters are com-
posed of few hundreds of water molecules and several ions
of the same sign and are in the liquid state. Fragmentation is
controlled by two competing factors: the repulsive Coulomb
interactions of ions with similar charge that tend to fragment
the droplets and the opposing effect of the surface tension and
the polarization of the solvent. For certain ratio of number of
ions to solvent molecules, these effects give rise to a free en-
ergy barrier between the compact structure of the system that
corresponds to the reactant state and the fragmented states
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Fig. 2 Possible fragmentation channels of a cluster that is composed initially of 170 H2O–2Na+–2K+ at T = 338 K. Large black coloured
spheres represent K+, smaller dark grey, Na+, small light grey spheres, O, and white spheres, H. The spheres that represent K+ and Na+ are
enlarged for visualization purposes. R denotes the reactant state, while P1 and P2 possible products or paths. In P1 path, the cluster fragments
when it contains approximately 155 H2O molecules and one K+ detaches by carrying 17 H2O molecules. In P2 path, the cluster fragments when
it contains 159 H2O molecules and one K+ detaches carrying 26 H2O molecules

that are the products. The products are not well defined since
the ions may escape from the droplet with variable number
of solvent molecules. An example of the process is shown
in Fig. 2 where the snapshots are taken from direct constant
energy MD simulations performed on a droplet that initially
was composed of 170 H2O − 2Na+ − 2K+.

The process is complicated because the fragmentation
happens along with evaporation of the solvent. The reaction
rate and the mechanism of fragmentation are found by con-
structing an appropriate RC, building the reversible work pro-
file (free energy) along the RC and computing the reactive
flux. Direct MD simulations for various system sizes, ions
and different ways of modelling the interatomic interactions
show that fragmentation occurs through configurations that
look typically as the configuration shown in Fig. 3. Such bot-
tlenecked configurations most likely correspond to the barrier
top of the free energy profile.

Since the shape of the entire droplet changes during the
process, the RC should be able to distinguish between the
shape changes and to capture fluctuations that may lead to
fragmentation. In articles [73,74], we discuss the behaviour
of the radius of gyration of the droplet and dipole moment
RCs and we proposed a new RC, called the transfer RC (TRC)

that is able to distinguish important configurations that may
lead to fragmentation. The TRC can be described in the fol-
lowing way: a fictitious particle is considered that is initially
located on one of the ions. The fictitious particle travels from
one ion to another through jumps to the intermediate sol-
vent molecules. The fictitious particle jumps between mol-
ecules i, j found at distance ri j with probability Pi j given
by:

Pi j = A exp(−r2
i j/d2), (30)

where A and d are constants determined by trials (typical
values used in the simulations are A = 0.1 and d = σOO).
These parameters can be optimized so the barrier height
of the free energy increases and the calculation of the rate
constant becomes more efficient. Function (30) is arbitrary.
One can define another expression provided that the function
is less than one, its value is large for jumps to the mole-
cules in the first coordination shell around a specific mol-
ecule and is close to zero, for jumps to the molecules in
farther coordination shells. The probability of jumps to the
closest molecules is large, so the fictitious particle can re-
solve the structure of the solvent by making small steps.
The value of the RC is estimated by the average over all
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Fig. 3 Typical configuration at the bottleneck of the fragmentation that corresponds to the path P1 in Fig. 2. The colour coding of the atomic
sites is the same as in Fig. 2

ion pairs of the mean first passage time for the fictitious
particle to move between two ions. Hence, the RC (ξ ) is
defined by

ξ = m(m − 1)

2
log

( ∑
α,β qαβ

m(m − 1)

)
, (31)

where α, β denote a pair of ions, m is the number of ions
in the cluster and qαβ is the mean first passage time for the
fictitious particle to move between the two ions. The TRC
contains both ion and solvent spacial coordinates and it asso-
ciates the motion of the ions, for example, the escape of
the ion, with the location of the solvent molecules in the
cluster. Using the TRC, cluster configurations with bottle-
necks that separate ions are distinguished from spherical or
elliptical configurations. When there are dumbbell configu-
rations with ions found in different lobes, the fictitious par-
ticle that starts from an ion in one lobe makes many jumps
to reach the ion in a different lobe since it needs to pass
from the narrow bridge that connects the lobes. This yields
a larger values of the RC relative to a spherical configura-
tion.

Using the TRC, the free energy profile is estimated by um-
brella sampling [47,73]. The free energy profile for a system
of 180 water molecules and 4 Na+ is shown in Fig. 4 along
with typical configurations at the minima and the barrier top
of the profile. In the free energy profile, we are not concerned
with the fragmented configurations (products) since we are
interested in the rate from the connected to fragmented states
(forward process). Once the clusters fragment, they do not
recombine since they are found in vacuum. The free energy
profile assists us locate the dynamic bottleneck of the forward

process. However, if we know the configurations that corre-
spond to the barrier top, we can find the distribution of the
products, by analyzing a large number of constant energy MD
trajectories starting from the barrier top of the free energy pro-
files. The transition state theory estimate of the fragmentation
rate is 2.5ns−1. The transmission coefficient is computed us-
ing Eq. (14) and it is shown in Fig. 5. A plateau is established
after a transient time of 5 ps. The value of the transmission
coefficient is very small, 0.05, which is indicative of diffu-
sive crossing of the barrier. The full rate that includes the
transmission coefficient is 1.25 × 10−1ns−1. Even though
the transmission coefficient has a small value, the error bars
indicate that a reliable estimate of the rate can be made.

4.2 Interconversion reactions in complexes of ions

Complexes of ions appear in aqueous clusters in the atmo-
sphere where they may undergo many reactions [75] with
implications in the reactivity of nitrogen oxides and other
solutes that affect the quality of air. We chose to study the
simplest complex of ions [NaCl2]− in a cluster composed of
several tens of water molecules. This ion complex undergoes
quite complicated interconversion reactions between contact
and solvent separated (SS) forms. The reaction can be de-
scribed as:

Cl−(1) | Na+ | Cl−(2) � Cl−(1) || Na+ | Cl−(2)

� Cl−(1) || Na+ || Cl−(2), (32)

where the single vertical line denotes contact ion (CI) forms
while the two vertical lines SS forms. Equation (32) describes
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Fig. 4 Reversible work profile for a cluster containing 180 water molecules, 4 Na+ and typical snapshots of the system at the reversible work
minimum (reactant state) and barrier top. The staircase form of the graphs is due to the P(ξ) histograms that enter Eq. (15). The colour coding
of the atomic sites of water molecules is the same as in Fig. 2. The large dark spheres represent Na+

Fig. 5 Time dependent transmission coefficient for the escape of Na+ from a cluster containing 180 water molecules and 4 Na+

one possible channel of the interconversion process. An
equivalent reaction channel exists, where Cl−(1) | Na+ | Cl−(2)

forms Cl−(1) | Na+ || Cl−(2) in the first step and subsequently,

Cl−(1) || Na+ || Cl−(2), is formed in the second step of 32. The
underlying free energy surface associated with the interion-
ic distances Cl−(2)–Na+ (r1) and Cl−(2)–Na+ (r2) as RCs is
shown schematically in Fig. 6 [75]. The topography of the
free energy surface, motivates the use of ξ(r1, r2) =
(r2

1 + r2
2 )

1/2
as one-dimensional RC that takes into account

both reaction channels. The reactive flux method can be used
with the one-dimensional RC. It is found that the transmis-
sion coefficient has diffusive character and, therefore, there
are considerable corrections to the TST estimate of the rate
coefficient. Analysis of the trajectories shows that the shape
fluctuations of the cluster and the diffusive motion of the
surface solvent molecules contribute to the relaxation pro-
cesses in the time-dependent transmission coefficient and
this may possibly lead to the breakdown of simple first-order
kinetics.
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Fig. 6 Schematic representation of the three-dimensional free energy
surface of [NaCl2]− in the presence of 70 water molecules. The solid
lines represent the sections of the free energy profile along which the
free energy was computed using the blue moon ensemble. Paths I and II
correspond to the first and second inter conversion reactions in Eq. (32),
respectively. The diagonal path III passes from a global maximum
energy state in the free energy surface and it is unlikely to be taken.
The dashed line represents the region where the transition states may
be found and motivates the construction of a one-dimensional RC

5 Conclusion

Development of methods for the computation of reaction
rates in condensed phase is a field that is still in flux even
though it has a history of several decades. Here, only aspects
of the classical expressions for the rate coefficients and meth-
ods of determining the reaction mechanisms were presented.
Because of the breadth of the field, important topics that are
broad on their own, such as methods for computing the rate
coefficient when the barrier crossing is diffusive, multidi-
mensional transition state theory, quantum expressions for
rate constants and their form when the system is treated by
mixed quantum-classical dynamics were left out of this re-
view. The rapidly growing computer technology allowed for
the schemes presented here to be applied in realistic situ-
ations. For instance, applications of TPS has given insight
into autoionization of bulk water [76] and interconversion
reactions of ion pairs [77,78]. Minimization of the action
schemes have been applied in the study of conformational
changes of biological molecules [65]. Since the problems
in nature are complex and the methodologies have limita-
tions, it may be useful to use a combination of techniques
and information from experiments to study reactions of high
complexity. Treatment of multichannel reactions or reactions
where the products are not known in advance is a challeng-
ing problem in the field. Furthermore, even though sampling
of reactive paths or the most probable path may reveal the
fluctuations that determine the reaction, it is still challenging
to model these effects in an RC. The foundations for many
of the numerical schemes we use today had been laid before

the advent of ultrafast computers. Microscopic expressions
of rate constants such as the reactive-flux scheme and kinetic
models for reactions that take into account collisions and the
effect of short-and long-range interactions in the colliding
particles were established in the period between 1960 and
1980. Extensive calculations revealed the complexity of the
chemical processes and showed the limitations of the existing
schemes. This motivated the search for alternative methods
that may focus on sampling of the reactive paths or finding
the most probable reaction path. Since computer technology
is improving rapidly, one may think of developing techniques
that include the advantages of fast computing in their con-
struction.

Appendix A: Generalized Langevin equation for a dynamical
variable

The starting point for the derivation of a generalized Lange-
vin equation for any dynamical variable is the Liouville equa-
tion for the evolution of a classical dynamical variable G,

dG(t)

dt
=

(∂ H

∂qi

∂G

∂pi
− ∂ H

∂pi

∂G

∂qi

)
= {H, G}= i LG(t), (33)

where the second equality defines the Poisson bracket and
the third equality defines the Liouville operator L . H is the
Hamiltonian of the system while qi , pi denote the positions
and momenta of the atoms. Since the Liouville operator does
not depend on time, the solution of this equation is

G(t) = ei Lt G(0). (34)

In applications of the projection operator method, the dynam-
ical variables of the system are separated into two sets: a set
of slowly varying variables and a set of rapidly varying vari-
ables. A projection operator is constructed that projects the
full classical dynamics onto subspace of the slow variables.
Let G be the set of slow variables. A projection operator onto
G can be constructed in the following way:

P = (·, G)(G, G)−1G, (35)

When P acts on any dynamical variable, the result is propor-
tional to G: it projects out of the variable, the slowly varying
component that is parallel to G. The complement of the pro-
jection operator P is Q = 1 − P that projects onto the space
orthogonal to G.

The generalized Langevin equation is now easily written
for the set G of dynamical variables using just two pieces
of information. First, since by definition P + Q = 1, we
may write the Liouville operator as i L = i P L + i QL ≡
i L P + i L Q . Second, for any operators C and D we have the
operator identity [79],

e(C+D)t =
t∫

0

dτ e(C+D)τ CeD(t−τ) + eDt . (36)
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Then, using these results, we can write

dG(t)

dt
= ei Lt i LG = ei Lt i L P G + ei Lt i L QG

= ei Lt i L P G +
t∫

0

dτ ei Lτ i L P ei L Q(t−τ)i L QG

+ei L Qt i L QG, (37)

where we let C = i L P and D = i L Q . If we now substitute
the definition of the projection operator in Eq. (35) we obtain
the generalized Langevin equation Eq. (5).
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